MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. EN 1.0308 Steel

Both ASTM A182 grade F23 and EN 1.0308 steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is EN 1.0308 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
100 to 130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
7.8 to 28
Fatigue Strength, MPa 320
140 to 200
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Shear Strength, MPa 360
230 to 260
Tensile Strength: Ultimate (UTS), MPa 570
360 to 440
Tensile Strength: Yield (Proof), MPa 460
190 to 340

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 450
400
Melting Completion (Liquidus), °C 1500
1460
Melting Onset (Solidus), °C 1450
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 41
51
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
1.8
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.5
1.4
Embodied Energy, MJ/kg 36
18
Embodied Water, L/kg 59
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
32 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 550
93 to 300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
13 to 16
Strength to Weight: Bending, points 19
14 to 16
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 17
11 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0 to 0.17
Chromium (Cr), % 1.9 to 2.6
0
Iron (Fe), % 93.2 to 96.2
98.2 to 100
Manganese (Mn), % 0.1 to 0.6
0 to 1.2
Molybdenum (Mo), % 0.050 to 0.3
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.045
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0