MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. Grade 5 Titanium

ASTM A182 grade F23 belongs to the iron alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
8.6 to 11
Fatigue Strength, MPa 320
530 to 630
Poisson's Ratio 0.29
0.32
Reduction in Area, % 46
21 to 25
Shear Modulus, GPa 74
40
Shear Strength, MPa 360
600 to 710
Tensile Strength: Ultimate (UTS), MPa 570
1000 to 1190
Tensile Strength: Yield (Proof), MPa 460
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 450
330
Melting Completion (Liquidus), °C 1500
1610
Melting Onset (Solidus), °C 1450
1650
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 41
6.8
Thermal Expansion, µm/m-K 13
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
36
Density, g/cm3 8.0
4.4
Embodied Carbon, kg CO2/kg material 2.5
38
Embodied Energy, MJ/kg 36
610
Embodied Water, L/kg 59
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 550
3980 to 5880
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 20
62 to 75
Strength to Weight: Bending, points 19
50 to 56
Thermal Diffusivity, mm2/s 11
2.7
Thermal Shock Resistance, points 17
76 to 91

Alloy Composition

Aluminum (Al), % 0 to 0.030
5.5 to 6.8
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0 to 0.080
Chromium (Cr), % 1.9 to 2.6
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 93.2 to 96.2
0 to 0.4
Manganese (Mn), % 0.1 to 0.6
0
Molybdenum (Mo), % 0.050 to 0.3
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.0050 to 0.060
87.4 to 91
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Residuals, % 0
0 to 0.4