MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F36 vs. Grade 9 Titanium

ASTM A182 grade F36 belongs to the iron alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F36 and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
11 to 17
Fatigue Strength, MPa 330
330 to 480
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Shear Strength, MPa 440
430 to 580
Tensile Strength: Ultimate (UTS), MPa 710
700 to 960
Tensile Strength: Yield (Proof), MPa 490
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 410
330
Melting Completion (Liquidus), °C 1460
1640
Melting Onset (Solidus), °C 1420
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 39
8.1
Thermal Expansion, µm/m-K 13
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
37
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 1.7
36
Embodied Energy, MJ/kg 22
580
Embodied Water, L/kg 53
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 650
1380 to 3220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 25
43 to 60
Strength to Weight: Bending, points 22
39 to 48
Thermal Diffusivity, mm2/s 10
3.3
Thermal Shock Resistance, points 21
52 to 71

Alloy Composition

Aluminum (Al), % 0 to 0.050
2.5 to 3.5
Carbon (C), % 0.1 to 0.17
0 to 0.080
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0.5 to 0.8
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 95 to 97.1
0 to 0.25
Manganese (Mn), % 0.8 to 1.2
0
Molybdenum (Mo), % 0.25 to 0.5
0
Nickel (Ni), % 1.0 to 1.3
0
Niobium (Nb), % 0.015 to 0.045
0
Nitrogen (N), % 0 to 0.020
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.25 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0 to 0.020
2.0 to 3.0
Residuals, % 0
0 to 0.4