MakeItFrom.com
Menu (ESC)

AWS E630 vs. Nickel 693

AWS E630 belongs to the iron alloys classification, while nickel 693 belongs to the nickel alloys. They have a modest 27% of their average alloy composition in common, which, by itself, doesn't mean much. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS E630 and the bottom bar is nickel 693.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 8.0
34
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Tensile Strength: Ultimate (UTS), MPa 1040
660

Thermal Properties

Latent Heat of Fusion, J/g 280
330
Melting Completion (Liquidus), °C 1430
1350
Melting Onset (Solidus), °C 1380
1310
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 17
9.1
Thermal Expansion, µm/m-K 14
13

Otherwise Unclassified Properties

Base Metal Price, % relative 14
60
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 2.8
9.9
Embodied Energy, MJ/kg 40
140
Embodied Water, L/kg 140
320

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 37
23
Strength to Weight: Bending, points 29
21
Thermal Diffusivity, mm2/s 4.5
2.3
Thermal Shock Resistance, points 28
19

Alloy Composition

Aluminum (Al), % 0
2.5 to 4.0
Carbon (C), % 0 to 0.050
0 to 0.15
Chromium (Cr), % 16 to 16.8
27 to 31
Copper (Cu), % 3.3 to 4.0
0 to 0.5
Iron (Fe), % 71.6 to 75.9
2.5 to 6.0
Manganese (Mn), % 0.25 to 0.75
0 to 1.0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 4.5 to 5.0
53.3 to 67.5
Niobium (Nb), % 0.15 to 0.3
0.5 to 2.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 1.0