MakeItFrom.com
Menu (ESC)

C443.0 Aluminum vs. S15700 Stainless Steel

C443.0 aluminum belongs to the aluminum alloys classification, while S15700 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C443.0 aluminum and the bottom bar is S15700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
200 to 460
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 9.0
1.1 to 29
Fatigue Strength, MPa 120
370 to 770
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 130
770 to 1070
Tensile Strength: Ultimate (UTS), MPa 230
1180 to 1890
Tensile Strength: Yield (Proof), MPa 100
500 to 1770

Thermal Properties

Latent Heat of Fusion, J/g 470
290
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 600
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
16
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.9
3.4
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1120
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
17 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 70
640 to 4660
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 24
42 to 67
Strength to Weight: Bending, points 31
32 to 43
Thermal Diffusivity, mm2/s 58
4.2
Thermal Shock Resistance, points 10
39 to 63

Alloy Composition

Aluminum (Al), % 89.6 to 95.5
0.75 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 0 to 2.0
69.6 to 76.8
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.5
6.5 to 7.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 4.5 to 6.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0