MakeItFrom.com
Menu (ESC)

EN 1.0034 Steel vs. EN 1.8881 Steel

Both EN 1.0034 steel and EN 1.8881 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0034 steel and the bottom bar is EN 1.8881 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 97 to 110
250
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 9.0 to 32
16
Fatigue Strength, MPa 140 to 170
460
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 220 to 230
510
Tensile Strength: Ultimate (UTS), MPa 340 to 380
830
Tensile Strength: Yield (Proof), MPa 180 to 280
710

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 400
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 53
40
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
3.7
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.9
Embodied Energy, MJ/kg 18
26
Embodied Water, L/kg 45
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 95
120
Resilience: Unit (Modulus of Resilience), kJ/m3 84 to 210
1320
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 12 to 13
29
Strength to Weight: Bending, points 14 to 15
25
Thermal Diffusivity, mm2/s 14
11
Thermal Shock Resistance, points 11 to 12
24

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.15
0 to 0.2
Chromium (Cr), % 0
0 to 1.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 98.7 to 100
91.9 to 100
Manganese (Mn), % 0 to 0.7
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 0.35
0 to 0.8
Sulfur (S), % 0 to 0.045
0 to 0.0080
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zirconium (Zr), % 0
0 to 0.15