MakeItFrom.com
Menu (ESC)

EN 1.0314 Steel vs. Grade 31 Titanium

EN 1.0314 steel belongs to the iron alloys classification, while grade 31 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0314 steel and the bottom bar is grade 31 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 24 to 25
20
Fatigue Strength, MPa 140 to 220
300
Poisson's Ratio 0.29
0.32
Reduction in Area, % 78 to 86
34
Shear Modulus, GPa 73
41
Shear Strength, MPa 200 to 250
320
Tensile Strength: Ultimate (UTS), MPa 320 to 400
510
Tensile Strength: Yield (Proof), MPa 190 to 310
450

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1470
1660
Melting Onset (Solidus), °C 1430
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 53
21
Thermal Expansion, µm/m-K 12
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 1.4
36
Embodied Energy, MJ/kg 18
600
Embodied Water, L/kg 46
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 87
99
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 250
940
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 11 to 14
32
Strength to Weight: Bending, points 13 to 15
32
Thermal Diffusivity, mm2/s 14
8.5
Thermal Shock Resistance, points 10 to 13
39

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.030
0 to 0.080
Cobalt (Co), % 0
0.2 to 0.8
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 99.365 to 99.78
0 to 0.3
Manganese (Mn), % 0.2 to 0.4
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.35
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
97.9 to 99.76
Residuals, % 0
0 to 0.4