MakeItFrom.com
Menu (ESC)

EN 1.0345 Steel vs. EN 1.8936 Steel

Both EN 1.0345 steel and EN 1.8936 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.0345 steel and the bottom bar is EN 1.8936 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
20
Fatigue Strength, MPa 170
250
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 270
370
Tensile Strength: Ultimate (UTS), MPa 420
600
Tensile Strength: Yield (Proof), MPa 230
370

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
40
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
2.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.7
Embodied Energy, MJ/kg 19
24
Embodied Water, L/kg 48
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 96
100
Resilience: Unit (Modulus of Resilience), kJ/m3 140
370
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 15
21
Strength to Weight: Bending, points 16
20
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 13
17

Alloy Composition

Aluminum (Al), % 0.020 to 0.024
0 to 0.060
Carbon (C), % 0 to 0.16
0 to 0.2
Chromium (Cr), % 0 to 0.3
0 to 0.3
Copper (Cu), % 0 to 0.3
0 to 0.2
Iron (Fe), % 97.2 to 99.38
95.5 to 98.9
Manganese (Mn), % 0.6 to 1.2
1.0 to 1.7
Molybdenum (Mo), % 0 to 0.080
0 to 0.1
Nickel (Ni), % 0 to 0.3
0 to 1.0
Niobium (Nb), % 0 to 0.020
0 to 0.050
Nitrogen (N), % 0 to 0.012
0 to 0.020
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.35
0.1 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.020
0 to 0.2