MakeItFrom.com
Menu (ESC)

EN 1.0478 Steel vs. EN 1.4011 Stainless Steel

Both EN 1.0478 steel and EN 1.4011 stainless steel are iron alloys. Both are furnished in the quenched and tempered condition. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.0478 steel and the bottom bar is EN 1.4011 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 24
17
Fatigue Strength, MPa 170
310
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Tensile Strength: Ultimate (UTS), MPa 440
700
Tensile Strength: Yield (Proof), MPa 230
510

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
750
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
25
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
2.0
Embodied Energy, MJ/kg 20
28
Embodied Water, L/kg 48
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
660
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 16
25
Strength to Weight: Bending, points 16
23
Thermal Diffusivity, mm2/s 13
6.7
Thermal Shock Resistance, points 14
24

Alloy Composition

Aluminum (Al), % 0 to 0.060
0
Carbon (C), % 0 to 0.18
0 to 0.15
Chromium (Cr), % 0 to 0.3
11.5 to 13.5
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 96.9 to 99.4
82.8 to 88.5
Manganese (Mn), % 0.6 to 1.4
0 to 1.0
Molybdenum (Mo), % 0 to 0.080
0 to 0.5
Nickel (Ni), % 0 to 0.3
0 to 1.0
Niobium (Nb), % 0 to 0.030
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.025
Vanadium (V), % 0 to 0.050
0