MakeItFrom.com
Menu (ESC)

EN 1.4560 Stainless Steel vs. EN 1.4563 Stainless Steel

Both EN 1.4560 stainless steel and EN 1.4563 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have 65% of their average alloy composition in common.

For each property being compared, the top bar is EN 1.4560 stainless steel and the bottom bar is EN 1.4563 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
200
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 50
40
Fatigue Strength, MPa 190
210
Impact Strength: V-Notched Charpy, J 91
91
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
80
Shear Strength, MPa 390
420
Tensile Strength: Ultimate (UTS), MPa 550
620
Tensile Strength: Yield (Proof), MPa 190
250

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Maximum Temperature: Corrosion, °C 420
460
Maximum Temperature: Mechanical, °C 940
1100
Melting Completion (Liquidus), °C 1420
1420
Melting Onset (Solidus), °C 1370
1370
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 15
36
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 3.0
6.3
Embodied Energy, MJ/kg 42
87
Embodied Water, L/kg 150
240

Common Calculations

PREN (Pitting Resistance) 19
39
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
200
Resilience: Unit (Modulus of Resilience), kJ/m3 92
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20
21
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 4.0
3.2
Thermal Shock Resistance, points 12
13

Alloy Composition

Carbon (C), % 0 to 0.035
0 to 0.020
Chromium (Cr), % 18 to 19
26 to 28
Copper (Cu), % 1.5 to 2.0
0.7 to 1.5
Iron (Fe), % 66.8 to 71
31.6 to 40.3
Manganese (Mn), % 1.5 to 2.0
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 8.0 to 9.0
30 to 32
Nitrogen (N), % 0 to 0.1
0 to 0.1
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0 to 0.015
0 to 0.010