MakeItFrom.com
Menu (ESC)

EN 1.4584 Stainless Steel vs. C12500 Copper

EN 1.4584 stainless steel belongs to the iron alloys classification, while C12500 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4584 stainless steel and the bottom bar is C12500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
1.5 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
43
Tensile Strength: Ultimate (UTS), MPa 500
220 to 420
Tensile Strength: Yield (Proof), MPa 210
75 to 390

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1440
1080
Melting Onset (Solidus), °C 1390
1070
Specific Heat Capacity, J/kg-K 460
390
Thermal Conductivity, W/m-K 17
350
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
92
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
93

Otherwise Unclassified Properties

Base Metal Price, % relative 31
31
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 5.7
2.6
Embodied Energy, MJ/kg 78
41
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
5.6 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 110
24 to 660
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 17
6.9 to 13
Strength to Weight: Bending, points 17
9.1 to 14
Thermal Diffusivity, mm2/s 4.5
100
Thermal Shock Resistance, points 12
7.8 to 15

Alloy Composition

Antimony (Sb), % 0
0 to 0.0030
Arsenic (As), % 0
0 to 0.012
Bismuth (Bi), % 0
0 to 0.0030
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 1.0 to 3.0
99.88 to 100
Iron (Fe), % 41.7 to 52
0
Lead (Pb), % 0
0 to 0.0040
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 24 to 26
0 to 0.050
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Tellurium (Te), % 0
0 to 0.025
Residuals, % 0
0 to 0.3