MakeItFrom.com
Menu (ESC)

EN 1.4594 Stainless Steel vs. Grade 5 Titanium

EN 1.4594 stainless steel belongs to the iron alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4594 stainless steel and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11 to 17
8.6 to 11
Fatigue Strength, MPa 490 to 620
530 to 630
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Shear Strength, MPa 620 to 700
600 to 710
Tensile Strength: Ultimate (UTS), MPa 1020 to 1170
1000 to 1190
Tensile Strength: Yield (Proof), MPa 810 to 1140
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 820
330
Melting Completion (Liquidus), °C 1450
1610
Melting Onset (Solidus), °C 1410
1650
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 16
6.8
Thermal Expansion, µm/m-K 11
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 15
36
Density, g/cm3 7.9
4.4
Embodied Carbon, kg CO2/kg material 3.2
38
Embodied Energy, MJ/kg 45
610
Embodied Water, L/kg 130
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1660 to 3320
3980 to 5880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 36 to 41
62 to 75
Strength to Weight: Bending, points 29 to 31
50 to 56
Thermal Diffusivity, mm2/s 4.4
2.7
Thermal Shock Resistance, points 34 to 39
76 to 91

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.070
0 to 0.080
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 1.2 to 2.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 72.6 to 79.5
0 to 0.4
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.2 to 2.0
0
Nickel (Ni), % 5.0 to 6.0
0
Niobium (Nb), % 0.15 to 0.6
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Residuals, % 0
0 to 0.4