MakeItFrom.com
Menu (ESC)

EN 1.4935 Stainless Steel vs. EN 1.8936 Steel

Both EN 1.4935 stainless steel and EN 1.8936 steel are iron alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4935 stainless steel and the bottom bar is EN 1.8936 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 16 to 18
20
Fatigue Strength, MPa 350 to 400
250
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 480 to 540
370
Tensile Strength: Ultimate (UTS), MPa 780 to 880
600
Tensile Strength: Yield (Proof), MPa 570 to 670
370

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 740
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 24
40
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
2.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.7
Embodied Energy, MJ/kg 42
24
Embodied Water, L/kg 100
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
100
Resilience: Unit (Modulus of Resilience), kJ/m3 830 to 1160
370
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28 to 31
21
Strength to Weight: Bending, points 24 to 26
20
Thermal Diffusivity, mm2/s 6.5
11
Thermal Shock Resistance, points 27 to 30
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.060
Carbon (C), % 0.17 to 0.24
0 to 0.2
Chromium (Cr), % 11 to 12.5
0 to 0.3
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 83 to 86.7
95.5 to 98.9
Manganese (Mn), % 0.3 to 0.8
1.0 to 1.7
Molybdenum (Mo), % 0.8 to 1.2
0 to 0.1
Nickel (Ni), % 0.3 to 0.8
0 to 1.0
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0.1 to 0.5
0.1 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.015
Tungsten (W), % 0.4 to 0.6
0
Vanadium (V), % 0.2 to 0.35
0 to 0.2