MakeItFrom.com
Menu (ESC)

EN 1.4982 Stainless Steel vs. EN 1.0308 Steel

Both EN 1.4982 stainless steel and EN 1.0308 steel are iron alloys. They have 67% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4982 stainless steel and the bottom bar is EN 1.0308 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
100 to 130
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
7.8 to 28
Fatigue Strength, MPa 420
140 to 200
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 490
230 to 260
Tensile Strength: Ultimate (UTS), MPa 750
360 to 440
Tensile Strength: Yield (Proof), MPa 570
190 to 340

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 860
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 13
51
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 22
1.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 4.9
1.4
Embodied Energy, MJ/kg 71
18
Embodied Water, L/kg 150
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
32 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 830
93 to 300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27
13 to 16
Strength to Weight: Bending, points 23
14 to 16
Thermal Diffusivity, mm2/s 3.4
14
Thermal Shock Resistance, points 17
11 to 14

Alloy Composition

Boron (B), % 0.0030 to 0.0090
0
Carbon (C), % 0.070 to 0.13
0 to 0.17
Chromium (Cr), % 14 to 16
0
Iron (Fe), % 61.8 to 69.7
98.2 to 100
Manganese (Mn), % 5.5 to 7.0
0 to 1.2
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 9.0 to 11
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.045
Vanadium (V), % 0.15 to 0.4
0