MakeItFrom.com
Menu (ESC)

Grade 31 Titanium vs. N08332 Stainless Steel

Grade 31 titanium belongs to the titanium alloys classification, while N08332 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 31 titanium and the bottom bar is N08332 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
34
Fatigue Strength, MPa 300
170
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 320
350
Tensile Strength: Ultimate (UTS), MPa 510
520
Tensile Strength: Yield (Proof), MPa 450
210

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 320
1050
Melting Completion (Liquidus), °C 1660
1390
Melting Onset (Solidus), °C 1610
1340
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
12
Thermal Expansion, µm/m-K 8.7
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
1.9

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 36
5.4
Embodied Energy, MJ/kg 600
77
Embodied Water, L/kg 230
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
140
Resilience: Unit (Modulus of Resilience), kJ/m3 940
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 32
18
Strength to Weight: Bending, points 32
18
Thermal Diffusivity, mm2/s 8.5
3.1
Thermal Shock Resistance, points 39
12

Alloy Composition

Carbon (C), % 0 to 0.080
0.050 to 0.1
Chromium (Cr), % 0
17 to 20
Cobalt (Co), % 0.2 to 0.8
0
Copper (Cu), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
38.3 to 48.2
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
34 to 37
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.75 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0
0 to 0.025
Titanium (Ti), % 97.9 to 99.76
0
Residuals, % 0 to 0.4
0