MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. AWS E383

Grade 5 titanium belongs to the titanium alloys classification, while AWS E383 belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is AWS E383.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 8.6 to 11
34
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
580

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Melting Completion (Liquidus), °C 1610
1420
Melting Onset (Solidus), °C 1650
1370
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 6.8
12
Thermal Expansion, µm/m-K 8.9
14

Otherwise Unclassified Properties

Base Metal Price, % relative 36
37
Density, g/cm3 4.4
8.1
Embodied Carbon, kg CO2/kg material 38
6.4
Embodied Energy, MJ/kg 610
89
Embodied Water, L/kg 200
240

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 62 to 75
20
Strength to Weight: Bending, points 50 to 56
19
Thermal Diffusivity, mm2/s 2.7
3.1
Thermal Shock Resistance, points 76 to 91
15

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
26.5 to 29
Copper (Cu), % 0
0.6 to 1.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
28.8 to 39.2
Manganese (Mn), % 0
0.5 to 2.5
Molybdenum (Mo), % 0
3.2 to 4.2
Nickel (Ni), % 0
30 to 33
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.9
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0