MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. EN 1.4028 Stainless Steel

Grade 5 titanium belongs to the titanium alloys classification, while EN 1.4028 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is EN 1.4028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.6 to 11
11 to 17
Fatigue Strength, MPa 530 to 630
230 to 400
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 600 to 710
410 to 550
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
660 to 930
Tensile Strength: Yield (Proof), MPa 910 to 1110
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 330
760
Melting Completion (Liquidus), °C 1610
1440
Melting Onset (Solidus), °C 1650
1400
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 6.8
30
Thermal Expansion, µm/m-K 8.9
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 36
7.0
Density, g/cm3 4.4
7.7
Embodied Carbon, kg CO2/kg material 38
1.9
Embodied Energy, MJ/kg 610
27
Embodied Water, L/kg 200
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
94 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
380 to 1360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62 to 75
24 to 33
Strength to Weight: Bending, points 50 to 56
22 to 27
Thermal Diffusivity, mm2/s 2.7
8.1
Thermal Shock Resistance, points 76 to 91
23 to 32

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0.26 to 0.35
Chromium (Cr), % 0
12 to 14
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
83.1 to 87.7
Manganese (Mn), % 0
0 to 1.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0

Comparable Variants