MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. EN 1.4594 Stainless Steel

Grade 5 titanium belongs to the titanium alloys classification, while EN 1.4594 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is EN 1.4594 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.6 to 11
11 to 17
Fatigue Strength, MPa 530 to 630
490 to 620
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 600 to 710
620 to 700
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
1020 to 1170
Tensile Strength: Yield (Proof), MPa 910 to 1110
810 to 1140

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
820
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1650
1410
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 6.8
16
Thermal Expansion, µm/m-K 8.9
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
15
Density, g/cm3 4.4
7.9
Embodied Carbon, kg CO2/kg material 38
3.2
Embodied Energy, MJ/kg 610
45
Embodied Water, L/kg 200
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
110 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
1660 to 3320
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62 to 75
36 to 41
Strength to Weight: Bending, points 50 to 56
29 to 31
Thermal Diffusivity, mm2/s 2.7
4.4
Thermal Shock Resistance, points 76 to 91
34 to 39

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.070
Chromium (Cr), % 0
13 to 15
Copper (Cu), % 0
1.2 to 2.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
72.6 to 79.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
1.2 to 2.0
Nickel (Ni), % 0
5.0 to 6.0
Niobium (Nb), % 0
0.15 to 0.6
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0