MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. N08800 Stainless Steel

Grade 5 titanium belongs to the titanium alloys classification, while N08800 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is N08800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.6 to 11
4.5 to 34
Fatigue Strength, MPa 530 to 630
150 to 390
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 600 to 710
340 to 580
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
500 to 1000
Tensile Strength: Yield (Proof), MPa 910 to 1110
190 to 830

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 330
1100
Melting Completion (Liquidus), °C 1610
1390
Melting Onset (Solidus), °C 1650
1360
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 6.8
12
Thermal Expansion, µm/m-K 8.9
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
30
Density, g/cm3 4.4
8.0
Embodied Carbon, kg CO2/kg material 38
5.3
Embodied Energy, MJ/kg 610
76
Embodied Water, L/kg 200
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
42 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
96 to 1740
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 62 to 75
18 to 35
Strength to Weight: Bending, points 50 to 56
18 to 28
Thermal Diffusivity, mm2/s 2.7
3.0
Thermal Shock Resistance, points 76 to 91
13 to 25

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0.15 to 0.6
Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 0
0 to 0.75
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
39.5 to 50.7
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
30 to 35
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 87.4 to 91
0.15 to 0.6
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0

Comparable Variants