MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. S15700 Stainless Steel

Grade 5 titanium belongs to the titanium alloys classification, while S15700 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is S15700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.6 to 11
1.1 to 29
Fatigue Strength, MPa 530 to 630
370 to 770
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 600 to 710
770 to 1070
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
1180 to 1890
Tensile Strength: Yield (Proof), MPa 910 to 1110
500 to 1770

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 330
870
Melting Completion (Liquidus), °C 1610
1440
Melting Onset (Solidus), °C 1650
1400
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 6.8
16
Thermal Expansion, µm/m-K 8.9
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
15
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
3.4
Embodied Energy, MJ/kg 610
47
Embodied Water, L/kg 200
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
17 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
640 to 4660
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62 to 75
42 to 67
Strength to Weight: Bending, points 50 to 56
32 to 43
Thermal Diffusivity, mm2/s 2.7
4.2
Thermal Shock Resistance, points 76 to 91
39 to 63

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0.75 to 1.5
Carbon (C), % 0 to 0.080
0 to 0.090
Chromium (Cr), % 0
14 to 16
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
69.6 to 76.8
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
6.5 to 7.7
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0

Comparable Variants