MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. S66286 Stainless Steel

Grade 5 titanium belongs to the titanium alloys classification, while S66286 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is S66286 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.6 to 11
17 to 40
Fatigue Strength, MPa 530 to 630
240 to 410
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
75
Shear Strength, MPa 600 to 710
420 to 630
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
620 to 1020
Tensile Strength: Yield (Proof), MPa 910 to 1110
280 to 670

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 330
920
Melting Completion (Liquidus), °C 1610
1430
Melting Onset (Solidus), °C 1650
1370
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 6.8
15
Thermal Expansion, µm/m-K 8.9
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 36
26
Density, g/cm3 4.4
7.9
Embodied Carbon, kg CO2/kg material 38
6.0
Embodied Energy, MJ/kg 610
87
Embodied Water, L/kg 200
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
150 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
190 to 1150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 62 to 75
22 to 36
Strength to Weight: Bending, points 50 to 56
20 to 28
Thermal Diffusivity, mm2/s 2.7
4.0
Thermal Shock Resistance, points 76 to 91
13 to 22

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0
13.5 to 16
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
49.1 to 59.5
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87.4 to 91
1.9 to 2.4
Vanadium (V), % 3.5 to 4.5
0.1 to 0.5
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0

Comparable Variants