MakeItFrom.com
Menu (ESC)

SAE-AISI 1044 Steel vs. C11600 Copper

SAE-AISI 1044 steel belongs to the iron alloys classification, while C11600 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1044 steel and the bottom bar is C11600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 18
2.7 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
43
Shear Strength, MPa 380
160 to 240
Tensile Strength: Ultimate (UTS), MPa 620
230 to 410
Tensile Strength: Yield (Proof), MPa 340
77 to 410

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 51
390
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
100
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
100

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
35
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 18
42
Embodied Water, L/kg 45
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
9.7 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 320
25 to 710
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22
7.2 to 13
Strength to Weight: Bending, points 21
9.4 to 14
Thermal Diffusivity, mm2/s 14
110
Thermal Shock Resistance, points 20
8.2 to 15

Alloy Composition

Carbon (C), % 0.43 to 0.5
0
Copper (Cu), % 0
99.78 to 99.915
Iron (Fe), % 98.8 to 99.27
0
Manganese (Mn), % 0.3 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Silver (Ag), % 0
0.085 to 0.12
Sulfur (S), % 0 to 0.050
0
Residuals, % 0
0 to 0.1