MakeItFrom.com
Menu (ESC)

SAE-AISI 1090 Steel vs. ASTM A356 Grade 10

Both SAE-AISI 1090 steel and ASTM A356 grade 10 are iron alloys. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1090 steel and the bottom bar is ASTM A356 grade 10.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220 to 280
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11
23
Fatigue Strength, MPa 320 to 380
300
Poisson's Ratio 0.29
0.29
Reduction in Area, % 28 to 45
39
Shear Modulus, GPa 72
74
Tensile Strength: Ultimate (UTS), MPa 790 to 950
670
Tensile Strength: Yield (Proof), MPa 520 to 610
430

Thermal Properties

Latent Heat of Fusion, J/g 240
260
Maximum Temperature: Mechanical, °C 400
460
Melting Completion (Liquidus), °C 1450
1470
Melting Onset (Solidus), °C 1410
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
39
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
3.9
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.8
Embodied Energy, MJ/kg 19
23
Embodied Water, L/kg 46
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82 to 91
130
Resilience: Unit (Modulus of Resilience), kJ/m3 730 to 1000
480
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 28 to 34
24
Strength to Weight: Bending, points 24 to 27
22
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 25 to 31
19

Alloy Composition

Carbon (C), % 0.85 to 1.0
0 to 0.2
Chromium (Cr), % 0
2.0 to 2.8
Iron (Fe), % 98 to 98.6
94.4 to 96.6
Manganese (Mn), % 0.6 to 0.9
0.5 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.2
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0 to 0.050
0 to 0.030