MakeItFrom.com
Menu (ESC)

SAE-AISI 1090 Steel vs. Grade 23 Titanium

SAE-AISI 1090 steel belongs to the iron alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1090 steel and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11
6.7 to 11
Fatigue Strength, MPa 320 to 380
470 to 500
Poisson's Ratio 0.29
0.32
Reduction in Area, % 28 to 45
30
Shear Modulus, GPa 72
40
Shear Strength, MPa 470 to 570
540 to 570
Tensile Strength: Ultimate (UTS), MPa 790 to 950
930 to 940
Tensile Strength: Yield (Proof), MPa 520 to 610
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 240
410
Maximum Temperature: Mechanical, °C 400
340
Melting Completion (Liquidus), °C 1450
1610
Melting Onset (Solidus), °C 1410
1560
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 50
7.1
Thermal Expansion, µm/m-K 12
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
36
Density, g/cm3 7.8
4.4
Embodied Carbon, kg CO2/kg material 1.4
38
Embodied Energy, MJ/kg 19
610
Embodied Water, L/kg 46
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82 to 91
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 730 to 1000
3430 to 3560
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 28 to 34
58 to 59
Strength to Weight: Bending, points 24 to 27
48
Thermal Diffusivity, mm2/s 13
2.9
Thermal Shock Resistance, points 25 to 31
67 to 68

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0.85 to 1.0
0 to 0.080
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 98 to 98.6
0 to 0.25
Manganese (Mn), % 0.6 to 0.9
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4