MakeItFrom.com
Menu (ESC)

C11600 Copper vs. EN 1.0107 Steel

C11600 copper belongs to the copper alloys classification, while EN 1.0107 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C11600 copper and the bottom bar is EN 1.0107 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.7 to 50
29
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 160 to 240
250
Tensile Strength: Ultimate (UTS), MPa 230 to 410
380
Tensile Strength: Yield (Proof), MPa 77 to 410
210

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 390
51
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 35
2.1
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.5
Embodied Energy, MJ/kg 42
19
Embodied Water, L/kg 390
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.7 to 91
95
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 710
110
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.2 to 13
13
Strength to Weight: Bending, points 9.4 to 14
15
Thermal Diffusivity, mm2/s 110
14
Thermal Shock Resistance, points 8.2 to 15
12

Alloy Composition

Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 99.78 to 99.915
0 to 0.3
Iron (Fe), % 0
97.7 to 100
Manganese (Mn), % 0
0 to 0.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.35
Silver (Ag), % 0.085 to 0.12
0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020
Residuals, % 0 to 0.1
0