MakeItFrom.com
Menu (ESC)

C11600 Copper vs. EN 1.4470 Stainless Steel

C11600 copper belongs to the copper alloys classification, while EN 1.4470 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C11600 copper and the bottom bar is EN 1.4470 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.7 to 50
23
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
80
Tensile Strength: Ultimate (UTS), MPa 230 to 410
680
Tensile Strength: Yield (Proof), MPa 77 to 410
480

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1060
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 390
18
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 35
17
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.6
Embodied Energy, MJ/kg 42
49
Embodied Water, L/kg 390
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.7 to 91
140
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 710
570
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.2 to 13
24
Strength to Weight: Bending, points 9.4 to 14
22
Thermal Diffusivity, mm2/s 110
4.8
Thermal Shock Resistance, points 8.2 to 15
18

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
21 to 23
Copper (Cu), % 99.78 to 99.915
0
Iron (Fe), % 0
63.7 to 71.9
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
4.5 to 6.5
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Silver (Ag), % 0.085 to 0.12
0
Sulfur (S), % 0
0 to 0.025
Residuals, % 0 to 0.1
0