MakeItFrom.com
Menu (ESC)

C11600 Copper vs. EN 1.8523 Steel

C11600 copper belongs to the copper alloys classification, while EN 1.8523 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C11600 copper and the bottom bar is EN 1.8523 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.7 to 50
15
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
74
Shear Strength, MPa 160 to 240
610
Tensile Strength: Ultimate (UTS), MPa 230 to 410
1000
Tensile Strength: Yield (Proof), MPa 77 to 410
800

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 200
480
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 390
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 100
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 35
4.2
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 42
31
Embodied Water, L/kg 390
64

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.7 to 91
140
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 710
1700
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.2 to 13
36
Strength to Weight: Bending, points 9.4 to 14
28
Thermal Diffusivity, mm2/s 110
10
Thermal Shock Resistance, points 8.2 to 15
29

Alloy Composition

Carbon (C), % 0
0.35 to 0.45
Chromium (Cr), % 0
3.0 to 3.5
Copper (Cu), % 99.78 to 99.915
0
Iron (Fe), % 0
93.5 to 95.7
Manganese (Mn), % 0
0.4 to 0.7
Molybdenum (Mo), % 0
0.8 to 1.1
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Silver (Ag), % 0.085 to 0.12
0
Sulfur (S), % 0
0 to 0.035
Vanadium (V), % 0
0.15 to 0.25
Residuals, % 0 to 0.1
0