MakeItFrom.com
Menu (ESC)

C12500 Copper vs. ACI-ASTM CK3MCuN Steel

C12500 copper belongs to the copper alloys classification, while ACI-ASTM CK3MCuN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C12500 copper and the bottom bar is ACI-ASTM CK3MCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.5 to 50
39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
80
Tensile Strength: Ultimate (UTS), MPa 220 to 420
620
Tensile Strength: Yield (Proof), MPa 75 to 390
290

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1090
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1070
1350
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 350
12
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 92
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 93
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 2.6
5.6
Embodied Energy, MJ/kg 41
76
Embodied Water, L/kg 310
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6 to 88
200
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 660
210
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.9 to 13
21
Strength to Weight: Bending, points 9.1 to 14
20
Thermal Diffusivity, mm2/s 100
3.2
Thermal Shock Resistance, points 7.8 to 15
14

Alloy Composition

Antimony (Sb), % 0 to 0.0030
0
Arsenic (As), % 0 to 0.012
0
Bismuth (Bi), % 0 to 0.0030
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
19.5 to 20.5
Copper (Cu), % 99.88 to 100
0.5 to 1.0
Iron (Fe), % 0
49.5 to 56.3
Lead (Pb), % 0 to 0.0040
0
Manganese (Mn), % 0
0 to 1.2
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0 to 0.050
17.5 to 19.5
Nitrogen (N), % 0
0.18 to 0.24
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tellurium (Te), % 0 to 0.025
0
Residuals, % 0 to 0.3
0