MakeItFrom.com
Menu (ESC)

C22000 Bronze vs. EN 1.4982 Stainless Steel

C22000 bronze belongs to the copper alloys classification, while EN 1.4982 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C22000 bronze and the bottom bar is EN 1.4982 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 1.9 to 45
28
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 200 to 300
490
Tensile Strength: Ultimate (UTS), MPa 260 to 520
750
Tensile Strength: Yield (Proof), MPa 69 to 500
570

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
860
Melting Completion (Liquidus), °C 1040
1430
Melting Onset (Solidus), °C 1020
1390
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 190
13
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 45
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 29
22
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
4.9
Embodied Energy, MJ/kg 42
71
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.7 to 230
190
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 1110
830
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.1 to 17
27
Strength to Weight: Bending, points 10 to 17
23
Thermal Diffusivity, mm2/s 56
3.4
Thermal Shock Resistance, points 8.8 to 18
17

Alloy Composition

Boron (B), % 0
0.0030 to 0.0090
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 89 to 91
0
Iron (Fe), % 0 to 0.050
61.8 to 69.7
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
5.5 to 7.0
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0.15 to 0.4
Zinc (Zn), % 8.7 to 11
0
Residuals, % 0 to 0.2
0