MakeItFrom.com
Menu (ESC)

S21640 Stainless Steel vs. EN 1.4028 Stainless Steel

Both S21640 stainless steel and EN 1.4028 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S21640 stainless steel and the bottom bar is EN 1.4028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 46
11 to 17
Fatigue Strength, MPa 320
230 to 400
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 520
410 to 550
Tensile Strength: Ultimate (UTS), MPa 740
660 to 930
Tensile Strength: Yield (Proof), MPa 350
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 490
390
Maximum Temperature: Mechanical, °C 940
760
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
30
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 17
7.0
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 3.6
1.9
Embodied Energy, MJ/kg 51
27
Embodied Water, L/kg 150
100

Common Calculations

PREN (Pitting Resistance) 26
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
94 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 300
380 to 1360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
24 to 33
Strength to Weight: Bending, points 23
22 to 27
Thermal Diffusivity, mm2/s 4.0
8.1
Thermal Shock Resistance, points 16
23 to 32

Alloy Composition

Carbon (C), % 0 to 0.080
0.26 to 0.35
Chromium (Cr), % 17.5 to 19.5
12 to 14
Iron (Fe), % 63 to 74.3
83.1 to 87.7
Manganese (Mn), % 3.5 to 6.5
0 to 1.5
Molybdenum (Mo), % 0.5 to 2.0
0
Nickel (Ni), % 4.0 to 6.5
0
Niobium (Nb), % 0.1 to 1.0
0
Nitrogen (N), % 0.080 to 0.3
0
Phosphorus (P), % 0 to 0.060
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015