MakeItFrom.com
Menu (ESC)

S21640 Stainless Steel vs. EN 1.4935 Stainless Steel

Both S21640 stainless steel and EN 1.4935 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S21640 stainless steel and the bottom bar is EN 1.4935 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 46
16 to 18
Fatigue Strength, MPa 320
350 to 400
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 520
480 to 540
Tensile Strength: Ultimate (UTS), MPa 740
780 to 880
Tensile Strength: Yield (Proof), MPa 350
570 to 670

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 490
380
Maximum Temperature: Mechanical, °C 940
740
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
24
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 17
9.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.6
2.9
Embodied Energy, MJ/kg 51
42
Embodied Water, L/kg 150
100

Common Calculations

PREN (Pitting Resistance) 26
16
Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
130
Resilience: Unit (Modulus of Resilience), kJ/m3 300
830 to 1160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
28 to 31
Strength to Weight: Bending, points 23
24 to 26
Thermal Diffusivity, mm2/s 4.0
6.5
Thermal Shock Resistance, points 16
27 to 30

Alloy Composition

Carbon (C), % 0 to 0.080
0.17 to 0.24
Chromium (Cr), % 17.5 to 19.5
11 to 12.5
Iron (Fe), % 63 to 74.3
83 to 86.7
Manganese (Mn), % 3.5 to 6.5
0.3 to 0.8
Molybdenum (Mo), % 0.5 to 2.0
0.8 to 1.2
Nickel (Ni), % 4.0 to 6.5
0.3 to 0.8
Niobium (Nb), % 0.1 to 1.0
0
Nitrogen (N), % 0.080 to 0.3
0
Phosphorus (P), % 0 to 0.060
0 to 0.025
Silicon (Si), % 0 to 1.0
0.1 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.015
Tungsten (W), % 0
0.4 to 0.6
Vanadium (V), % 0
0.2 to 0.35