MakeItFrom.com
Menu (ESC)

S44536 Stainless Steel vs. EN 1.8523 Steel

Both S44536 stainless steel and EN 1.8523 steel are iron alloys. They have 80% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S44536 stainless steel and the bottom bar is EN 1.8523 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
300
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 22
15
Fatigue Strength, MPa 190
530
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 78
74
Shear Strength, MPa 290
610
Tensile Strength: Ultimate (UTS), MPa 460
1000
Tensile Strength: Yield (Proof), MPa 280
800

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Mechanical, °C 990
480
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
39
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 13
4.2
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.2
Embodied Energy, MJ/kg 41
31
Embodied Water, L/kg 140
64

Common Calculations

PREN (Pitting Resistance) 22
6.4
Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
140
Resilience: Unit (Modulus of Resilience), kJ/m3 200
1700
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
36
Strength to Weight: Bending, points 17
28
Thermal Diffusivity, mm2/s 5.6
10
Thermal Shock Resistance, points 16
29

Alloy Composition

Carbon (C), % 0 to 0.015
0.35 to 0.45
Chromium (Cr), % 20 to 23
3.0 to 3.5
Iron (Fe), % 72.8 to 80
93.5 to 95.7
Manganese (Mn), % 0 to 1.0
0.4 to 0.7
Molybdenum (Mo), % 0
0.8 to 1.1
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.050 to 0.8
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.035
Titanium (Ti), % 0 to 0.8
0
Vanadium (V), % 0
0.15 to 0.25