MakeItFrom.com
Menu (ESC)

S44536 Stainless Steel vs. S44401 Stainless Steel

Both S44536 stainless steel and S44401 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44536 stainless steel and the bottom bar is S44401 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 22
21
Fatigue Strength, MPa 190
200
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
78
Shear Strength, MPa 290
300
Tensile Strength: Ultimate (UTS), MPa 460
480
Tensile Strength: Yield (Proof), MPa 280
300

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 560
510
Maximum Temperature: Mechanical, °C 990
930
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
22
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
12
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.9
Embodied Energy, MJ/kg 41
40
Embodied Water, L/kg 140
130

Common Calculations

PREN (Pitting Resistance) 22
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
90
Resilience: Unit (Modulus of Resilience), kJ/m3 200
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
17
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 5.6
5.9
Thermal Shock Resistance, points 16
17

Alloy Composition

Carbon (C), % 0 to 0.015
0 to 0.025
Chromium (Cr), % 20 to 23
17.5 to 19.5
Iron (Fe), % 72.8 to 80
75.1 to 80.6
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0 to 0.5
0 to 1.0
Niobium (Nb), % 0.050 to 0.8
0
Nitrogen (N), % 0 to 0.015
0 to 0.035
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.8
0.2 to 0.8